Some Divisible Quaternary Linear Codes
 
In this page, we give some results on linear codes over the field of order 4
obtained by the exhaustive computer search using the package Q-Extension.
An m-divisible [n,k,d]_q code means a linear code of length n, dimension k and
minimum weight d over the field of order q.
In tables, "E" and "N" stand for Existence and Nonexistence, respectively.
 
4-divisible [n,k,4]_4 codes for n ≤ 22 and k=5,6,7,8
n / k  5   6   7   8 
1-13 N N N N
14 E N N N
15 E E N N
16 E N N N
17 E N N N
18 E E N N
19 E E E N
20 E E E E
21 E E E N
22 E E E N

4-divisible [n,k,8]_4 codes for n ≤ 22 and k=5,6,7,8
n / k  5   6   7   8 
1-15 N N N N
16 E N N N
17 N N N N
18 N N N N
19 E N N N
20 E E N N
21 E N N N
22 E E N N

8-divisible [n,k,8]_4 codes for n ≤ 34 and k=5,6,7
n / k  5   6   7 
1-27 N N N
28 E N N
29 N N N
30 E E N
31 E N N
32 E N N
33 N N N
34 E N N

8-divisible [n,k,16]_4 codes for n ≤ 34 and k=5,6,7
n / k  5   6   7 
1-30 N N N
31 E N N
32 E E N
33 N N N
34 N N N
 

See Some Ternary Divisible Codes for some 9-divisible ternary linear codes.

See also Database with linear codes for dimension k < 7 and Divisible Linear Codes .

This page is maintained by Tatsuya Maruta .